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The theory of deformation of a medium with a continuous distribution of dislocations is
studied. Such a medium will be called continuously dislocated, in contradistinction to a
discretely dislocated medium in which the number of dislocations is finite, albeit very
large.

1. Deformation. The motion of a point in a solid medium with Lagrangian coordinates
f‘ (i=1, 2, 3) is examined in three~dimensional Euclidean space, in which we introduce a
Cartesian coordinate system x* (i = 1, 2, 3). All kinematic properties will be referred to the
xt=axes.

The present work deals with the following fundamental hypothesis: At a fixed time ¢,
a small relative displacement of the points with Lagrangian coordinates £* and £* + d £}
is the total'differential with respect to £* and certain, as yet undefined, physical parame-
ters xs(f', t)(s=1, eeey S)e
du i (7]} S
du= g7 &b +5 7 X (1.1)
where u = ui(‘ff, x° (fi, t), t) Ji is the displacement of a point in Cartesian coordinates.
Hereinafter, summation over paired indices is understood.
By definition, a relative displacement with }* = const (s = 1, 2, ..., 5)
du i
P 4t (1.2)

x8 -=const

dlll =

is an elastic relative displacement, while a relative displacement

8

ou
duy = d
Uy axs 44 (1.3)

is a parametric (inelastic) relative displacement, because it is related to a change in the
parameters xs.

The physical reason for introducing the parameters x°* is, that their introduction allows
for the division of small relative displacements into two parts, (1.2) and (1.3). Thus, the
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kinematic description becomes more detailed: The vector u (&% x %, ¢) indicates not only
the general displacement of the point £?%, but also the physical processes in the medium,
described by the parameters y ¥, which accompany the displacement.

The parameters y * which depend on the coordinates {"i and ¢, by the very reason for
their introduction, must be closely related to the relative displacement, characterizing it
at every point and at every moment. They may be scalars, vectors or tensors, but they must
generally be found by experiment and from physical considerations.

The mathematical reason for introducing y ° is, that (1.1} permits the description of
relative displacements in a continuocusly dislocated medium.

Let us rewrite (1.1) in the form

_(u 0w '\ i Du
du—(agg'f"axa agi)di _Dgi dg (1.4)

Since du is the total differential with respect to &%, we have
D% D2y
pg'Del ~ DEDE!
and since du is also the total differential with respect to fi and y ® {see the hypotheses
above), we have

{1.5)

2 2
L RO (1.6)
o' 08’ 0%’ 9t
But it can be easily verified that
D du D @a
el el = (L7
Dg? o8 " DE' oF’
Hence, the integral over any closed contour C given by
ou
S =b (1.8)
C %

yields, by definition {1 and 2] , a Burgers vector which, in view of (1.7), is non~zero. This
implies that the medium under consideration has continuously distributed dislocations.

If the relative displacement du is given by (1.2) and (1.3), then, clearly the medium
contains no dislocations.

The Burgers vector may also be given by the integral

ou

, = —1
oy OE de’ ) (1.9)

In the above formulas, the symbol Du/D {:‘ denotes the total partial derivative with res«
pect to ,f‘, which takes into account the dependence of u on x?* (f‘) The quantity 511/85‘
is the partial derivative with respect to f‘ considering y ® constant. This is the elastic
partial derivative.

The components of the final strain tensor are given by (3]
2e5m= g0 — %= 97,07, — 0%9% (1.10)

where 3, form the basis in moving Lagranglan coordinates while 3°; form the basis in
fixed coordinates.
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Utilizing known methods of expressing the strain tensor in terms of displacements (3]
and Formula (1.4), we readily obtain, in the Cartesian coordinate system x,

&; =32
du; oy’ ou, E ax®  Ou, ou* 0_)(“ du, ou* 9y ° 6x') win
ay® ozt oxt 9y ax7  oal oy® axt oy oyl oxt 8x’ )

1 [ Ouy  Ou, du, aua_l— duy oy
(axf ozt ozt ozl 8y 9z)

For infinitesimal displacements,
1 <6ui du;  duy oy’ ou; 8xs)
% =2\ T et T o 0 T op o

The strains in (1.12) may be divided into elastic e(e)ij and inelastic, or parametric

(1.12)

8(p)i3

. ple) (p)
gy ==e"3 +evy; (1.13)

where

g 1 (.aﬁJr o ) o L (aui 3 42 1') (1.14)
' ’ YT 2\ oy axi T oy o '

Similarly, the tensor of infinitesimal rotations may be represented as the sum of two
components

0 ou, ¢ . oy’

n(e),:i(_'g__i:__> ,,(p,,:i(_"’_'z?x_,_&ﬁc_ (1.15)
T2\ el ot )0 T2 \ay* a7 oy st

However, neither the tensor of finite strain 8”-3131' nor the tensor of finite rotation

1],-53i3j may be split into elastic and parametric parts, as may be seen, for example, from
(1.1D).

For the medium under investigation
u=r—ro=u (&, x* & 9, 9 (1.16)
The velocity of the point rfi is given by

ou ~ du o

— (@ 4y
= b — =V v
V=" T 8t’ +

(1.17)

— i .
x5, E'l_const zt=const

The components of the strain rate tensor are given by [3]

Ju i
§> or! dg'=bh (1.18)

C

Taking into account (1.14), (1.17) and (1.18),.we obtain the components of the strain
rate tensor from the velocity in case when Ju; /Jx/ does not depend explicitly on y ¢ and
a“i/axs does not depend explicitly on ¢:

’ av(e)i apl® | OU(P)i axs av()'ﬂ/ (’)15 \
o L (W b (TP
i o oz’ . 61,1 > 1y 2 a[ ax" ' 6)( ozt

2. Geometric treatment of strain theory. Let us examine the strains of a continuously
dislocated medium, and introduce a moving Lagrangian coordinate system with the basis
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- Dy
= b’g‘{' (2.1)
If the medium under study is considered as some space whose metric is
ga\{j—_—_3&i3~§;;: g°ij—!.—28 ij (2.2)

where g°%; = 3°9°; and 3° form a basis in the initial state in Euclidean space, then it
turns out that the above space is Euclidean.

In fact, it is easily shown by direct computation that

m 0T er,™ o
Ry = T axk + Ty r,P— kam r,?=0 (2.3)
s, x___.(pﬁ —Tf=0 (2.4)

Here R; fcl are the components of the curvature tensor, S‘-ik are the components of the
torsion tensor and F are the coefficients of connection written in Cartesian coordinates.

The coefficients of connection are defined by
DA,

Dg’

This result is entirely natural, since the entire strain of the body is the result of

transference of each point in the body from one Euclidean space into another Euclidean
space, i.e. the body remains a part of Euclidean space.

A KA
=TI",;"",=T,%a, (2.5)

But the continuously dislocated medium under study may be considered a space in
which the metric tensor g(")“-B‘Bj is defined by

g(e)"” — 3(8){ 3(8)],, g(o)"ﬁ pleligle) g(e)“_ 9igi (2.6)
ar
3(6)5 =1 2.7
9 x5=const

3% (i =1, 2, 3) will be called the elastic basis.
i

From (1.10), (2.6) and (1.14), we find that, for small strains, the metric tensor
g(°)i53i3j is related to the tensor of elastic strains by the formulas

g ij‘“g°i5:28(e) ij (2.8)

Inasmuch as motion of the medium will result in the dependence of E)(")i on the coore
dinates £%, explicitly as well as through the parameters ¥ °, the coefficients of connec~
tion are given by

D3< P
~{e) * k ({"); . l(e)“ﬁS
S ! P (2.9)

Direct computation in Cartesian coordinates yields
D du_ D du

gefe) ke Y R ope) KBy e e
2800 = (T = N ) O e o o T Dt 0w (2.10)

4 ol o(8 S}
1 < Dgt }'is [;D(P)J_s D' y )_

5

Z

D Dt Dz’

— S(e)jskg(e)ki _ S(e)iskg(e)k;' + ‘S(e)'ijkgw)ks — ]*U’)ijkg(c)ks 2.11)
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Formulas {2.10) and {2.11) shew that a continuously dislocated medium may, from a
geometric point of view, be considered as a three~dimensional space with atfine connec-
tion L(®), with torsion tensor 5494973y

If on the other hand we define a moving reference system and space metric in corres~
pondence with a deformable medium by

8§
N
P eyt et (2.12)
g(10)" = 3(1))‘,3(13;, g(p)"i}, Bigpy g(p)ﬁ 3y’ (2.13)

Then we obtain formulas similar to {(2.10) and (2.11)

28 kn __p@ K I‘(p) Ko —_——— e —
15 9= (1% ) 9= Dz* 8x'  Dx! 9 (2.14)
},,( Dg(?)is Dg(p)js Dg<p)ij
] Dz’ + Dzt Ds -
k
— 5 is g(p)ki__ S(p)iskg(p)k_ + S(p}é _kg(p) s = F(p){,kg(p)ks {2.15)

and the space is again found to be a metric space with affine connection L(p) and with
torsion tensor 5P, %9%79y. By comparing (2,10) with (2.14), we find

5@. R 5@’).;‘ (2.16)

Thus, the continucusly dislocated medium under study may be considered, from the
geometric point of view, as a space with affine connection L (e) or L(p)y and correspon=
dingly, from a physical point of view, as either elastic with an mcompatxble strain tensor
or inelastic also with an incompatible strain tensor, If the elastic and inelastic strains are
considered simultaneously, then the total strains are compatible, and the continuously dis-
located medium is, from a geometric point of view, a Euclidean space.

It is easily shown that the curvature tensors of the L(e)s and L(p)s spaces equal zero.

All considerations of this section apply to infinitesimal as well as finite strains,
However, for finite strains, the formulas (2.8) do not determine the components of elastic
deformation, for clearly, in the case of finite strains, such a tensor cannot, in general, be
separated from the strain tensor; instead, they determine the components of what may be
called a quasi-elastic tensor,

Similarly, in the case of finite strains, the formulas

{p)" o ~
g7 — g0y =27, (2.17)

determine the components of a quasi-parametric tensor.

The torsion tensor §(?;£2i973;, of the L(®)_ space is, in terms of the theory of con~
tinuous dislocations, the tensor of the density of dxslocauons atia; J; In fact, from the
definition of the dislocation density tensor [1],

b_§)——~dx m= a {353 (2.18)

where S is the surface supported on C. By Stokes’ theorem, (2.18) yields

im D 8u

ik . kel
a Bk" ¢ Dl g™ {2.19)
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Whence, (2.19) and (2.10) yield

ik - { 1k
oF . im S(e)l’mk‘ S(e)ﬁk =5 eyt (2.20)

Here ¢!™3;3,3,, and €;;,,9i3!9™ are antisymmetric unit tensors of third order, equal
to (+1) for even permutations of the indices, and to (1) for odd permutations. Formulas
similar to (2.20) were previously obtained in [5] .

The formulas expressing the components of the torsion tensor in terms of displacements
are given in Cartesian coordinates by

@ k_ g k_ L nm D Ouk
§% =S =g a5 oo (2.21)

In concluding this section, it should be noted that a continuously dislocated medium
may be considered, from the geometric point of view, as a space with affine connection
different from L(e)3 and L(p)a.

In fact, we can introduce a space metric and torsion

g(l»u-*fZ) b= 3{1;-",’1%3{1,'-‘,!1]2 2.9%)
ar oy’
L9 j— —
3 Q)i =37 —3_ET (s=1,...,(8—q) (2.93)
x™M=const
m=1,...,q
eeer k. plle..) & 1.9 K
o5 @) o= 7t Q)ij' — L@ % (2.24)
The coefficients of connection are given by
DL nd) N
__D_ET_L = T * gy (Lia)y (2.25)
In passing to another coordinate system, the coefficients F(I""Q)“i.k transform

according to transformation formulas of the Christoffel symbols, and therefore they are
coefficients of connection. The proof of the above is similar to that given in [3].

The torsion tensor S "‘Q)ijha‘aj.':)k is no longer related to the dislocation density
tensor by (2.20), since the dislocation density tensor, by definition, characterizes complete

incompatibility, when all, and not only certain ones, of the parameters ) * change simul-
taneously.

It is readily seen that the number of spaces with affine connection L(l"“q)s, including
L @)3, equals
] ns
Cly 2. 4 Ci=2 (2.26)
where Csk is the binomial coefficient.

3. Equations of E quilibrium, We repeat here almost verbatim the discussion of Kunin
[6]. With the aid of geometric identities interrelating the tensors g(e)i53‘3j, S(B)i5h3‘3j3k
and R);,/91079%9; it is possible to obtain the complete set of static equations for the
theory of continuous dislocations [2] s [4] and [s]

Curl w® 3,0/ =a"3,3,,  Divp® 3,5,=0,  p = pHm & = (37)

Here w(e)'j are the components of the elastic distortion tensor



Kinematics of a continuously dislocated medium 1135

i

w9 (3.2
i g
The operations of Curl and Div on a tensor a%/3;9; are defined by
k
— 1
i i ilm m
Curl a1j3i3’ =e o 9,9
ij pa”
. ij

Div ¢'93;9;= D 3; (3.3)

The known tensor of the density of dislocations ai/3;); should be subjected to the
condition

Diva',9,=0 (3.4)

Clearly, however, we may obtain similar results with the aid of geometric identities
interrelating the tensors

i 1 k 3 . N 3
g(p)ij 9'9, S(p)ij 9'37 9y, R(P)ijkl:_,z 3ig¥ Y
Curl w(P)ij 3i3j — ¥ 3; 3;" Div p'P¥ 9;9; =0, pP — p(Piflm w(P)lm (3.5)
Here
i s
w9 % (3.6)
0y Oz

are the components of the parametric distortion tensor.

If both systems of equations are combined, combining corresponding equations, which
is permissible since the equations are linear, we obtain

Curl »',3,97 =0, wt, = w4,

Divp'9;9;=0,  p’= p 4 p®H (3.7)

P = Al @ g pmiim @)

The first equation in (3.7) is satisfied identically; the second and third equations in
(3.7) are the equations of equilibrium and equations of state, respectively.
1f the medium is in a state of static equilibrium, then the parameters of the medium

must satisfy all three systems of equations simultaneously, from which it follows that in a
medium with dislocations there must exist not only the elastic stress tensor p<p)1:313].,

defined by (3.2), but also the parametric stress tensor p(P)/3,;, defined by (3.5).

The system of equations (3.7) is not complete. A complete set of equations for a
dynamic system will be obtained in future work.

In conclusion, the author expresses thanks to L.D. Sedov and V.V. Lokhin for their
interest in this work and for their valuable advice.
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