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SREDY) 

The theory of deformation of a medium with a continuous distribution of dislocations is 
studied. Such a medium will be called continuously dislocated, in contradistinction to a 

discretely dislocated medium in which the number of dislocations is finite, albeit very 

large. 

1. Def~matiot~. The motion of a point in a solid medium with Lagrangian coordinates 

[‘(i = 1, 2, 3) is examined in three-dimensional Euclidean space, in which we introduce a 

Cartesian coordinate system zi (i = 1, 2, 3). All kinematic properties will be referred to the 

&axes. 

The present work deals with the following fundamental hypothesis: At a fixed time t, 

a small relative displacement of the points with Lagrangian coordinates t’ and 4’ + d [’ 

is the total differential with respect to [’ and certain, as yet undefined, physical parame- 

ters xs (tie r ) (S = 1, -em, S ). 

au 
du = ag, - dci + $- dx’ 

(1.1) 

where n= rc’([i, xsfcit 2)~ t) 3 i is the displacement of a point in Cartesian coordinates. 

Hereinafter, summation over paired indices is understood. 

By definition, a relative displacement with xs = const (s = 1, 2, . . . . S) 

au 
dul = - 

w 
d$ 

x8 =comt 

is an elastic relative displacement, while a relative displacement 

(1.2) 

(1.3) 

is a parametric (inelastic) relative displacement, because it is related to a change in the 

parameters xs. 

The physical reason for introducing the parameters x ’ is, that their introduction allows 
for the division of small relative displacements into two parts, (1.2) and (1.3). Thus, the 
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kinematic description becomes more detailed: The vector u (5 x’, t ) indicates not only 

the general displacement of the point t’, but also the physic81 processes in the medium, 

described by the parameters xs, which accompany the displacement. 

The parameters xs which depend on the coordinates [‘ and t, by the very reason for 

their introduction, must he closely related to the relative displacement, characterizing it 

at every point and at every moment. They may he scalars, vectors or tensors, but they must 

generally be found by experiment and from physical considerationa. 

The mathematical reason for introducing x ’ is, that (1.1) permits the description of 

relative displacements in a continuously dislocated medium. 

Let us rewrite (1.1) in the form 

au ax* 
2-g. dfi = (1.4) 

Since da is the total differential with respect to [‘, we have 

D2u I% 
04irtgj=----Y- 

WD< 
(1.5) 

and since da is also the total differential with respect to 6’ and xs (see the hypotheses 

above), we have 

But it can be easily verified that 

Hence, the integral over any closed contour C given by 

(1.6) 

(1.7) 

(1.8) 

yields, by definition [l aod 21, a B urgers vector which, in view of (l.?), is non-zero. This 

implies that the medium under consideration has continuously distributed dislocations. 

If the relative displacement da is given by (1.2) and (1.31, then, clearly the medium 

contains no dislocations. 

The Burgers vector may also be given by the integral 

(1.9) 

In the above formulas, the symbol Du/Dt’ denotes the total partial derivative with res- 

pect to [‘, which takes into account the dependence of u on x s (5 ‘1. The quantity d~,/d~~ 

is the partial derivative with respect to [’ considering xs constant. This is the elastic 

partial derivative. 

The components of the final strain tensor sre given by [3] 

2Pij = pAi,i - :oij -’ 3A,3^j- 3”,30j 
(1.10) 

where 3Ai form the basis in moving Lagrangian coordinates while :Yi form the basis in 

fixed coordinates. 
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Utilizing known methods of expressing the strain tensor in terms of displacements [ 33 

and Formula (1.4), we readily obtain, in the Cartesian coordinate system x’s 

au, au” au, 3x8 

---&--$1-~+ 

ax8 ax' 

auj a$ au, 69 ax8 au, au” ai au, aUa ax d a$ 
+qg-gax”-g-asj,xra,i-7,t7 ax ax ax’ a~ 

(1.11) 

For infinitesimal displacements, 

(1.12) 

,(PLj 
The strains in (1.12) may be divided into elastic scejij and inelastic, or parametric 

p,. . = I+-!. + e(P) 
13 23 {j (1.13) 

where 

~Wj=;(~+~), e’qj = L (-5” + $E?$ (1.14) 
2 ax” ad 

Similarly, the tensor of infinitesimal rotations may be represented as the sum of two 

components 

However, neither the tensor of finite strain eij3f3j nor the tensor of finite rotation 

9ij3i3’ may be split into elastic and parametric parts, as may be seen, for example, from 

(1.11). 

For the medium under investigation 

u = r - r. = u (e, x8 (k*, t), t) 

The velocity of the point 4“ is given by 

au 
v=E 

I p, $=const -I- af at 
I 
zi=const = 

V(d + +) 

9 

The components of the strain rate tensor are given by [ 31 

(1.16) 

(1.17) 

(1.18) 

Taking into account (1.141, (1.17) and (1.18). we obtain the components of the strain 

rate tensor from the velocity in case when +/&i does not depend explicitly on xs and 

d”i/dx S does not depend explicitly on t: 

2. Geometric treatment of strain theory. Let us examine the strains of a continuously 
dislocated medium, and introduce a moving Lagrangian coordinate system with the basis 



1132 Y.A. Babkin 

(2.1) 

If the medium under study is considered as some space whose metric is 

g”tj=3”i3*jr”g”rj”;2&*ij 
(2.2) 

where g*ij = 3O*3Oj ZiD d 3°iform a basis in the initial state in Euclidean space, then it 

turns out that the above space is Euciideau. 

In fact, it is easily shown by direct computation that 

Rfkl 
m arklm ari,m 

z=. - 
&2 T + r,,m rklP - rkpm r 4p G 0 (2.3) 

(2.4) 

Here Rikl m are the components of the curvature tensor, S.. k 

torsion tensor and r*.k 
v 

are the components of the 

are the coefficients of connection written in Cartesian coordinates, 

The coefficients of bktnection are defined by 

D3^, 
-= 

w 
r-ijk3^,= riik3, (2.5) 

This result is entirely natura1, since the entire strain of the body is the result of 
transference of each point in the body from one Euclidean space into another Euclidean 
space, i.e. the body remains a part of Euclidean space. 

But the continuously dislocated medium under study may be considered a space in 
which the metric tensor g(B)ij3f3j is defined by 

g(e) n i j z 3(e), 3@). 3’ 
gW ij $e)~$eli = g(e),j 343i 

(2.7) 
3W. = ar 

2 
at’ I xs=const 

3”‘. (i = 1, 2, 3) will be called the elastic basis. I 
From (l.lO), (2.6) and (1.141, we find that, for small strains, the metric tensor 

&r)tj3i3j is related to the tensor of elastic strains by the formulas 

g@) n., - 
13 

go ij = 2E@)Jj 
(2.8) 

(2.6) 

Inasmuch as motion of the medium will result in the dependence of 3(“), on the coor- 

dinates [‘, explicitly as well as through the parameters x ‘, the coefficients of connec- 
tion are given by 

Direct computation in Cartesian coordinates yields 
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Formulas (2.10) and (2.11) show that s continuously dislocated medium may, from a 
geometric point of view, be considered as a three-dimensional space with affine connec- 

tion t cej3 with torsion tensor ~(e~~~~3~3~3~. 

If on the other hand we define a moving reference system and space metric in corres- 
pondence with a deformable medium by 

g(P)“” ‘ , = 3(~).3(~? 
23 * 3’ 

&$“) n ij 3W 3t~)i == g(~),j 3i 3j 

(2.12) 

(2.13) 

Then we obtain formulas similar to (2.10) and (2.11) 

~~(P}*j~3~ = (Fiji _ l+$k) 3,= Z aV _ $?$. 2 
L)z?* &r’ (2.14) 

1 NP)ts Dg’P’ flrg@).. 
23 -1 2-g-+--L---- 

( 02b: > 
- ~(P)i~k~(~)~~- ~(~)~~~~(~)~~ + s (P) k blksz r(~)..k~(P)k~ ii g 

13 
(2.15) 

and the space is again found to be a metric space with affine connection L(P), and with 

torsion tensor ~(p)~~~3~3~3~. By comparing (2.10) with (2.14), we find 

‘s(e). .k = - S(P). .k 
13 23 (2.16) 

Thus, the continuously dislocated medium under study may be considered, from the 

geometric point of view, as a space with affine connection L ce13 or L@),, and correspon- 

dingly, from a physical point of view, as either elastic with an incompatible strain tensor 

or inelastic also with an incompatible strain tensor. If the elastic and inelastic strains are 

considered simultaneously, then the total strains are compatible, and the continuously dis- 

located medium is, from a geometric point of view, a Euclidean space. 

It is easily shown that the curvature tensors of the Lte), and L@)3 spaces equal zero* 

All considerations of this section apply to infinitesimal as well as finite strains. 

Bowever, for finite strains, the formulas (2.8) do not determine the components of elastic 

deformation, for clearly, in the case of finite strains, such a tensor cannot, in general, be 

separated from the strain tensor; instead, they determine the components of what may be 

called a quasi-elastic tensor. 

Similarly, in the case of finite strains, the formulas 

p- . . - g” 
x3 

*j ^- 2E@)Aij (2.17) 

determine the components of a quasi-parametric tensor. 

The torsion tensor ~(e)*~3~3j3~ of the L(e)s space is, in terms of the theory of con- 

tinuous dislocations, the tensor of the density of dislocations atj3i3P In fact, from the 

definition of the dislocation density tensor [I] , 

(2.18) 

where S is the surface supported on C. By Stokes’ theorem, (2.18) yields 

ilrn D au 
Ct*k3k=e -7 

Dx’ ax (2.19) 
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Whence, (2.19) and (2.10) yield 

(2.20) 

Here ei?3i3~3, and eir,3%&3m are antisymmetric unit tensors of third order, equal 

to f+ 1) for even permutations of the indices, and to (- 
similar to (2.20) were previously obtained in [ 51 . 

1) for odd permutations. Formulas 

The formulas expressing the components of the torsion tensor in terms of displacements 

are given in Cartesian coordinates by 

SteiijP =: .Scp) jik = -& eIij einm-& srn 
(2.211 

In concluding this section, it should be noted that a continuously dislocated medium 
may be considered, from the geometric point of view, as a space with affine connection 
different from ,!, cej3 and ,!, @IS. 

In fact, we can introduce a space metric and torsion 

gfl,...*cr)^ rj = 3% . . . . ‘It,30 f...l9 
3 (2.22.l 

$l'...'Q)i = ar ax8 
as 

X~=conet 
T (s = 1, . . ., (S - q)) (2.23) 

m=1,...,p 

2sfl ,..., ri) ,,k= @,....ri).ff_. J+-P);~~ 
v 13 

The coefficients of connection are given by 

(2.20 

&p'...'")* 

DQ 
= r(l,...9)*ijk3(l'...,q)k (2.25) 

In passing to another coordinate system, the coefficients rft****q)A~~k transform 

according to transformation formulas of the Christoffel symbols, and therefore they are 
coefficients of connection. The proof of the above is similar to that given in [3] . 

The torsion tensor S@’ “.q)i$F&3~3~ is no longer related to the dislocation density 

tensor by (2.20), since the dislocation density tensor, by definition, characterizes complete 

incompatibility, when all, and not only certain ones, of the parameters xs change simul- 
taneously. 

L(P) 
It is readily seen that the number of spaces with affine connection t(1***‘@3, including 

3, equals 

c~+c~+...+c[i=25 (2.26) 

where C, k is the binomial coefficient. 

3. Equations of Equilibrium. We repeat here almost verbatim the discussion of Kunin 

[6]. With th e aid of geometric identities interrelating the tensors gfe)$&~, ,$fs)ijk3*3%k 

and R’e’~j~~3~3~~‘~3~ it is possible to obtain the complete set of static equations for the 

theory of dontinuous dislocations [21, f41 and [61 

CurI ,o(e)ij3i3j = aij3i3j, Di\r #e)ij 3i3j = 0 , #ePi = ~(diiZ7~ w(e)rm j3.1 J 

Here ru(e)i. sre th 
I 

e components of the elastic distortion tensor 
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,(e)i, = CC_ 
3 ad 

The operations of Curl and Div on a tensor ai%+3j are defined by 

Rakm 
Curl aij3i3j= cilm Dz’ 3,3, 

,,$ 

Div cii3i3j= 3 3j 

(3.2) 

(3.3) 

The known tensor of the density of dislocations atj3tgj should be subjected to the 

condition 

Divai’3i3j = 0 (3.4) 

Clearly, however, we may obtain similar results with the aid of geometric identities 

interrelating the tensors 

g(nl,j 3”$, S(o)ijk3t3j3k, R(P) . l . 
ijk Bia3Bkal 

Curl w(P)ij a,$ = - a’j3i3j, Div p(oltj 3, 3j = 0, p(pjij = h(rr’tjlrn ,@lm (3,5) 

Here 

,(p)i aui ax’ .- (3.6) 
3 a$ azf 

are the components of the parametric distortion tensor. 

If both systems of equations are combined, combining corresponding equations, which 

is permissible since the equations are linear, we obtain 

Curl Wij3,3j z 0, Jj = W’“‘ij + uwj 

Divpij3i3j =O, pij = #e)ti + #P)fj 
(3.7) . . 

PI3 = h(eliilm m(e) Im + @)iilm ,(p)I, 

The first equation in (3.7) is satisfied identically; the second and third equations in 

(3.7) are the equations of equilibrium and equations of state, respectively. 

If the medium is in a state of static equilibrium, then the parameters of the medium 
must satisfy all three systems of equations simultaneously, from which it follows that in a 

medium with dislocations there must exist not only the elastic stress tensor p(P)ij3,3j, 

defined by (3.2), but also the parametric stress tensor p(P)ij3i3j, defined by (3.5). 

The system of equations (3.7) is not complete. A complete set of equations for a 

dynamic system will be obtained in future work. 

In conclusion, the author expresses thanks to L.D. Sedov and V.V. Lokhin for their 
interest in this work and for their valuable advice. 
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